Particle Swarm Optimization

Iteration: 0

Best Fitness: Infinity

Best Position: (0.00, 0.00)

Particle Swarm Optimization (PSO)

PSO is a computational method that optimizes a problem by iteratively improving candidate solutions (particles) with regard to a given measure of quality (fitness function).

Velocity Update:

vi(t+1)=wvi(t)+c1r1(pixi(t))+c2r2(gxi(t))v_i(t+1) = w \cdot v_i(t) + c_1 \cdot r_1 \cdot (p_i - x_i(t)) + c_2 \cdot r_2 \cdot (g - x_i(t))

Position Update:

xi(t+1)=xi(t)+vi(t+1)x_i(t+1) = x_i(t) + v_i(t+1)

Parameters:

  • ww - inertia weight (momentum)
  • c1c_1 - cognitive coefficient (personal best attraction)
  • c2c_2 - social coefficient (global best attraction)
  • r1,r2r_1, r_2 - random numbers [0,1]
  • xix_i - particle position
  • viv_i - particle velocity
  • pip_i - particle's best known position
  • gg - swarm's best known position